Third Semester B.Sc. Degree Examination, October/November 2019

(CBCS Semester Scheme)

Mathematics

Paper 3.1 - REAL ANALYSIS

Time: 3 Hours

[Max. Marks : 90

Instructions to Candidates: Answers ALL questions. Answer should be written completely in English.

PART - A

Answer any SIX questions:

 $(6 \times 2 = 12)$

- 1. State rational density theorem.
- 2. If ab = 0 then prove that either a = 0 or b = 0.
- 3. Define convergence and oscillatory sequence.
- 4. If $\{a_n\}$ is convergent sequence of positive term then evaluate $\lim_{n\to\infty} a_n$ where $a_{n+1}=\frac{6}{5+a_n}$.
- 5. Write the condition for the convergence and divergence of the geometric series $\sum_{n=0}^{\infty} x^n$.
- 6. Test the convergence of the series $\sum \left(\frac{n}{n+1}\right)^{n^2}$
- 7. State Rolle's theorem for the function f(x).
- 8. Evaluate $\lim_{x\to 0} \frac{x-\sin x}{x^3}$.

Q.P. Code - 42339

Third Semioster E.St. Degree 'B-TRAY ion, October/November 2019

II. Answer any SIX questions :

 $(6 \times 3 = 18)$

- Prove that intersection of two neighbourhoods of a point is also a neighbourhood of that point.
- 10. Prove that intersection of two open set is an open set.
- 11. Find the nature of the sequence $a_n = \left(\frac{n-3}{n+2}\right)^{n/3}$.
- 12. Verify whether the sequence $\{a_n\}$ is monotonic increasing or decreasing where $a_n = \frac{n+3}{n+4}$.
- 13. Test the convergence of the series $\sum \frac{1}{n} \tan(1/n)$.
- 14. Discuss the convergence of the series $\sum (-1)^{n-1} \cdot \frac{n}{2n-1}$.
- 15. Verify Cauchy's mean value theorem for e^x and e^{-x} in [a,b].
- 16. Expand \log_e^x about x = 1 by Taylor's series.

PART - C

III. Answer any THREE questions:

 $(3 \times 5 = 15)$

- 17. Prove that every subset of countable set is countable.
- 18. Prove that every non empty subset of real numbers is bounded above has the least upper bound.
- 19. State and prove Archimedean property of real numbers.
- 20. Let A be a closed set and B be an open set, show that
 - (a) B-A is an open set
 - (b) A B is a closed set.

PART - D

IV. Answer any THREE questions:

 $(3 \times 5 = 15)$

- 21. Discuss the behaviour of the sequence whose n th term are
 - (a) $n[\log(n+1) \log n]$
 - (b) $\frac{(n+1)^{n+1}}{n^n}$.
- 22. Show that the sequence $\{a_n\}$ where $a_n = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!}$ is convergent.
- Prove that every monotonically increasing sequence and bounded above is convergent.
- 24. Discuss the nature of the sequence $\{x^n\}$ where x is a real number.

V. Answer any THREE questions:

 $(3 \times 5 = 15)$

- 25. Let $\sum u_n$ and $\sum v_n$ be two series of positive terms and $\lim_{n\to\infty} \frac{u_n}{v_n}$ be a finite non zero quantity then prove that $\sum u_n$ and $\sum v_n$ both converge or diverge.
- 26. Discuss the convergence of the series $\sum \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n} x^n$.
- 27. State and prove Raabe's test for positive series.
- 28. Discuss the convergence of the series $\frac{x}{1 \cdot 3} + \frac{x^2}{3 \cdot 5} + \frac{x^3}{5 \cdot 7} + \cdots$

Q.P. Code - 42339

PART - F

VI. Answer any THREE questions:

 $(3\times 5=15)$

- 29. If f(x) is continuous in [a,b] and $f(a) \neq f(b)$, then prove that f(x) takes every value between f(a) and f(b) at least once.
- 30. State and prove Lagrange's mean value theorem.
- 31. Expand log(1+x) upto term containing x^4 using Maclaurin's series.
- 32. Evaluate $\lim_{x\to 0} \left[\frac{a^x + b^x}{2} \right]^{\frac{1}{x}}$.